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Dynamic characteristics of a catenary that supplies electrical power to high-speed railway is 

investigated. The catenary is a slender structure composed of repeating spans. Each span is in 

turn composed of the contact and messenger wires connected by the hangers in regular intervals. 

A finite element based dynamic model is developed, and numerical simulations are performed 

to determine the dynamic characteristics of the catenary. The influence of the structural 

parameters on the response characteristics is investigated. The structural parameters considered 

include tension on the contact and messenger wires, stiffness of the hangers, and the hanger and 

span spacing. The hanger characteristics are found to be the dominant factors that influence the 

overall dynamic characteristics of the catenary. 
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I. Introduction 

Interest in high speed trains has risen in recent 

years due to their convenience, speed, and safety. 

The electrical power required for train traction is 

supplied by the catenary. The catenary is a slen- 

der structure composed of up to ten repeating 

spans. Each span is composed of the contact and 

messenger wires connected by thin wires known 

as the hangers in regular intervals. The catenary is 

supported by posts known as the catenary support 

at the boundary between the adjoining spans. To 
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keep in pace with ever increasing train speed, the 

catenary design seeks to maintain uniform com- 

pliance under high tension. 

In developing necessary technologies, numeri- 

cal simulation of the catenary dynamics has be- 

come an important tool for supplementing experi- 

mental investigations which are quite cumber- 

some to conduct due to high cost and difficulty in 

securing track time for test runs. The numerical 

simulation can often serve as a useful and econo- 

mical tool lbr performing sensitivity analysis of  

the structural parameters and helping to obtain 

optimal design solutions. 

A number of research works related to the 

performance of the catenary have been reported in 

open literature. In the early works of Farr et al. 

(1961) and Willets et al. (1966), dynamic an- 

alyses of the catenary for low-speed rail appli- 

cations were carried out based on experimental 

data collected from scaled-down models. Later, 
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Manabe (1989) reported on experimental inves- 

tigations for high-speed applications based on 

a scaled-down model of the catenary. Manabe 

(1991) also investigated design changes needed 

in the catenary to accomodate increase in train 

speed. Delfosse and Sauvestre (1983) focused on 

improving the reliability of the experimental 

methods for measuring the vertical motion of the 

contact wire. In the early analytical work of 

Belyaev and Vologine (1977), a simple discrete 

model of the catenary was developed to examine 

the influence of the dynamic parameters on the 

catenary response. Later, Chung and Choi (1991) 

performed numerical analysis of the catenary dy- 

namics in which the contact and messenger wires 

were modeled as uniform strings under tension. 

Kim et al. (1992) investigated wave propagation 

characteristics of the catenary by applying the 

finite difference method on a dynamic model in 

which the contact and messenger wires were 

modeled as uniform strings under tension. On the 

train side, Seering et al. (1991) investigated the 

design issues that need to be addressed to ensure 

steady supply of electrical current from the ca- 

tenary. More recently, Park et al. (1999) looked 

into the vibration responses of the catenary by 

considering various disturbances that can occur 

due to train motion. 

In the present study, numerical analysis of the 

catenary based on a finite element model is pres- 

ented. The contact and messenger wires are 

modeled as tensioned-beam elements to better 

account for flexural rigidity of these wires. The 

organization of the paper is as follows. In sec- 

tion 2, a dynamic model of the catenary based on 

the finite element formulation is described. In 

section 3, results of the numerical simulation are 

presented, followed by an examination of the 

effect of the structural parameters on the catenary 

response, reported in section 4. Finally, the main 

results are summarized in section 5. The nominal 

input values used for the simulation runs are 

based on the specifications of the Korean High 

Speed Rail System. 

2. Mathematical Modeling 

The overall structure of the catenary is shown 

in Fig. 1. The electrical current is supplied to the 

train through the contact wire. The contact wire is 

connected to the messenger wire through the 

hangers that serve to transmit weight of the con- 

tact wire onto the messenger wire. The hanger is 

a thin cable with uniform density and large 

stiffness in tension and negligible stiffness in 

compression. The messenger wire is supported by 

the catenary support, and the hanger lengths are 

set such that the contact wire profile maintains 

flatness within a proscribed limit. To properly 

account for the high frequency modes, the contact 

and messenger wires are modeled as beams under 

tension possessing flexural rigidity instead of the 

string elements adopted in the previous inves- 

tigations. 

The hangers are modeled as uniform cable 

elements that transmit the weight of the contact 

wire onto the messenger wire by connecting the 

two wires. Depending on the range of the relative 

motion of the contact and messenger wires, the 

hangers need to be modeled differently. In the 

static equilibrium position, the hangers are under 

elastic deformation (elongated) due to the weight 

of the contact wire. For small relative motion, the 

hanger always stay elongated due to the pull of 

the contact wire. Therefore, for small catenary 

motion, the hangers are always in tension and 

should be modeled as linear springs. There are 

intermittent occasions, however, in which the 

catenary suDDort 
messenger wire 

X contact wire 

ha get steady arm 

Fig. 1 Structure of catenary 
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relative mot ion between the contact  and messen- 

ger wires is such that the hanger goes into com- 

pression. If the relative mot ion of  the wires is such 

that the distance between the two wires gets 

shorter than the unstretched length of  the hanger, 

the hangers will go into compression. For  such 

cases, the hanger stiffness during compression 

becomes almost negligible, and the hangers need 

to be modeled as nonl inear  springs with a b i -  

directional  stiffness property. Such cases will be 

referred to as large catenary motion.  

The steady arm is used to provide  lateral ad- 

justment  on the contact wire, and can be treated 

simply as a lumped mass for the vertical mot ion 

analysis purpose. The catenary support  can be 

treated as a canti lever beam, and the equivalent  

spr ing-mass can be computed and incorporated 

into the model.  O n e - h a l f  of  each hanger mass is 

appended to the contact wire and the other  half  to 

the messenger wire as lumped masses. There are 

nine hangers for each span. The resulting finite 

element model  of  the catenary structure is shown 

in Fig. 2. The figure shows the 3-span model  

with the span length of  63 m. Clamped boundary  

condi t ions  are applied at both ends of  the struc- 

ture. The 6-span model  was also constructed and 

identical s imulat ions were run on both the 3-span 

and 6-span models, with no difference noted in 

the main conclusions reached. The later analyses 

will demonstrate  that the number  of  the spans in 

the catenary model  in excess of  three has no 

bearing on the overall  dynamic characteristics of  

the catenary. 

F rom the finite element model,  the global  equa- 

tions of  motion of  the catenary can be cast in the 

form of  

[M]{ ~ ( t ) } + [ C ] {  L,( t )}+[K]{ u(t) } = F ( t )  (I) 

where M, C, K matrices are the system mass, 

damping,  and stiffness matrices, and u( t )  and 

F ( t )  denote the displacement response vector 

and excitation vector, respectively. The matrices 

are all banded and symmetric, and W i l s o n - 0  

integration scheme is applied to obtain the solu- 

tions. (for general discussion, see Bathe, 1982) 

The specifications of  the Korean High Speed Rail 

Table 1 Specifications of the Korean High Speed 
Rail System catenary 

Contact wire Messenger wire 

T 20000 N 14000 N 

E 1.18×10 n P a  1.10XI0 n Pa 

p 8.893 × 103 kg/m 3 9.238 X 103 kg/m 3 

A 0.000150 m 2 0.00006549 m z 

l caleNa~ SbE~lT~:)q 

hanger 

83 m - - ~ , ~  " steady arm ~-"  coqlac~ wife i 

t 89  m 

Fig. 2 3-span catenary model 

System catenary used during model ing  are listed 

in Table  1, and the damping  ratios for the contact  

and messenger wires are set at 5% and 1%, re- 

spectively. 

3. Dynamic Analysis of Catenary 

Responses of  the finite element model  of  the 

catenary for the linear hanger stiffness case, i.e., 

for small catenary motion,  is simulated. The 

hanger spring constant is set at 10SN/m. The 

impulse responses of  the contact  wire in the fre- 

quency domain  are shown in Figs. 3 and 4. An 

impulse is applied at the center of  the catenary 

and the responses are calculated at the same 

point. The figures show that for the displacement 

response, 1.0 Hz component  is dominant  while for 

the acceleration response, 10.5 Hz and 21 .0Hz  

components  are pronounced.  In the fol lowing 

analysis, these components  are found to be closely 

related with the spacing (horizontal  distance) 

between the adjacent spans and hangers, respec- 

tively. They arise from the reflections of  the pro- 

pagating wave at the span and hanger boundaries.  

If  the contact and messenger wires are treated 

as separate tens ioned-beam structures, the wave 
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model 

propagation velocity can be calculated by (Petyt, 

1990) 

r : + : E I  (21 

where c, T ,  p, A ,  and w denote the wave 

propagation velocity, tension in the wire, mass 

density, cross-sectional area, and the circular fre- 

quency of the propagating wave, respectively. 

For tensioned-beams, the propagation velocity is 

dependent on the frequency of the wave due to its 

beam-like nature. In the present case, this depen- 

dence is somewhat slight, and for the frequency 

range of 0 to 50 Hz, the contact wire has the 

calculated velocity in the range of 122.4m/s-- 

122.9 m/s while the messenger wire has the ve- 

locity range of 152.1 m/s - -  153.0 m/s, yielding the 

mean propagation velocities of 122.7 m/s and 

152.6 m/s, respectively. For the catenary struc- 

ture in which the contact and messenger wire 

dynamics are coupled, however, simulated wave 

propagation velocities are significantly different : 

The mean contact wire wave propagation velocity 

increases to 135 m/s while the mean velocity for 

the messenger wire decreases to 136 m/s, implying 

that the wave propagation velocities have con- 

verged due to coupling effect of the hangers. For 

a given wave propagation velocity, the frequency 

corresponding to the wave traversing a segment of 

length 1 back and forth can be calculated by 

2zr 
_ 7 c  /l c c c 

f - -  3~-~ -- 2x A 2l (3) 

where f ,  l,/1, and 7 denote the frequency, length, 

wave length, and wave number, respectively. Sub- 

stituting the wave propagation velocity of 135 

m/s and the span length of 63 m into Eq. (3) 

yields 1.0 Hz. Substituting the spacing between 

the adjacent hangers of 6.65 m yields 10.5 Hz, 

and by multiplying by 2, 21.0 Hz can be obtained 

as well. The dominant 1.0 Hz component of the 

contact wire displacement response shown in Fig. 

3 is related to the wave reflections from the span 

boundary, while the dominant frequency com- 

ponents of the acceleration response shown in 

Fig. 4 are due to the wave traversing between the 

adjacent hangers. 

To further verify the above observations, the 

harmonic excitations with frequencies of 1.0 Hz, 

10.5 Hz, and 21.0 Hz, respectively, are applied at 

the center of the catenary model and the responses 

are calculated as functions of the distance along 

the contact wire. In Fig. 5, the effect of the span 

boundaries on the response of the contact wire 

for the 1.0 Hz harmonic excitation is clearly visi- 

ble. The two vertical lines in the figure denote the 

span boundaries. In Figs. 6 and 7, the responses 

of the middle span segment for the 10.5 Hz and 

21.0 Hz harmonic excitations are shown. The 

nine vertical lines represent the hanger boun- 

daries within the middle span. In both figures, the 

response contours clearly show the dependence 

on the hanger boundaries. It is known from the 

investigation of Park et al. (1999) that 10.5 Hz 

and 21.0 Hz frequency components play an im- 

portant role on the issue of maintaining contact 
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between the catenary and the running train. The 

simulation runs were also conducted using the 

6-span model with no difference in the main 

findings. 
In order to better understand the above fin- 

dings, the modal properties are investigated. For 
slender, repeating structures such as the catenary, 

a large number of modes exist with small spacing 

E 

(23 

f - ~  rnesserlgef ~nfe 
/" 

/ 

Length ( m ]  

cor:tacl wlfo 

Fig. 9 First mode shape 

between the adjacent modes in the frequency 

domain. It is more appropriate in this case to 

consider the modal density instead of individual 

modes, as shown in Fig. 8 for the 3-span model. 

For simple tensioned-beam structures, fairly uni- 

form (albeit slightly decreasing) modal distribut- 

ion can be expected. For the catenary structure 

however, the modal distribution is quite uneven, 

with higher modal density observed in certain 

frequencies. These frequencies seem to be. related 

with the acceleration response of Fig. 4. This 
relationship can be explained by the concept of 

the statistical energy analysis (SEA) in which the 

vibration energy level in a given frequency range 

is assumed to be proportional to the number of 

modes present in the range. (for general discus- 

sion, see Lyon, 1975) Although the frequency 
range considered in the present study is lower 
than the range in which the statistical energy 
analysis is usually applied, a sufficient number of 

modes exist in this case for the correlation be- 
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tween the vibration energy level and the modal 

density to be significant. For 6-span model, the 

modal density is approximately double that of 

Fig. 8 but the modal distribution is quite similar, 

and the identical conclusion is reached. A repre- 

sentative mode shape is illustrated in Fig. 9. 

In the static equilibrium position of the ca- 

tenary, each hanger is subject to 92 N tensile 

force due to the gravitational pull of the catenary 

wire, resulting in the approximately I mm elastic 

deformation of the hanger. When the relative 

displacement between the contact and messenger 

wires exceeds the 1 mm static deformation initi- 

ally in place, perhaps due to a jerking motion of 

the contact wire, the hangers need to be modeled 

as bi-directional springs with the spring constants 

of 105 N/m during tension (just as in the linear 

stiffness model) and 10 N / m  during compression 

(negligible stiffness). The simulated results of the 
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catenary model with the nonlinear hanger still 2 

ness are shown in Figs. 10 and 11. As in the linear 

case shown in Figs. 3 and 4, the dominant fre- 

quency components at 1.0 Hz and 10.5 Hz are 

visible. There is an important difference, however, 

in that the response energy is more widely spread 

in the frequency domain. This implies that there is 

less vibration energy at the low frequency range 

which normally plays more dominant role in the 

catenary motion. This finding is corroborated by 

comparing the transient responses of the linear 

and nonlinear catenary models as shown in Figs. 

12 and 13. The dominant period of the transient 

response shown in Fig. 12 corresponds to the 10. 

5Hz component of Fig. 4. In contrast, the re- 

sponse shown in Fig. 13 for the nonlinear case 

lacks distinct periodicity. 

4. Effect  of  Structural Parameters  on 
Catenary Dynamics 

To more closely examine the sensitivity of the 

catenary response on the structural parameters, 

the nominal design values of these parameters are 

varied, and the corresponding variations in the 
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responses are calculated. 

4.1 Ef fec t  of  tension 

For the frequency range of  less than 50 Hz, the 

E 1  ,2 magnitude of  ~ u term in Eq. (_) is less than 
p z i  

" T "  

2 .7% o f  term, implying  the predominance 

of  the tension effect over the flexural rigidity effect 

in the contact and messenger wires considered 

here. Theretbre, the rate of  the wave propagation 

velocity variation should more or less be propor- 

t ional to v"T in close agreement with uniform 

strings. Varying the tension in the wire affects the 

wave propagation velocity and causes the corre- 

sponding variation in the dynamic  characteristics 

such as the natural frequency. The wave propaga- 

tion velocity o f  the contact wire as a function of  

the tension is plotted in Fig. 14. The wave pro- 

pagation velocity' of  a uniform string which ex- 

actly fo l lows  the , " T  rule is also plotted for 

comparison,  and the two curves are quite similar. 

The variation in the 21 Hz frequency component  

Table 2 Wave propagalion velocity and frequency vs. tension 

Tension in contact/messenger wires Simulated propagation I Propagation velocity Frequency due to 
(,%ochange from nominal valuel velocity (m/s) of  simple wire (m/s) hanger spacing (Hz) 

10000/7000(--50) 95.0 86.58 14.2 

14000/9800(--30) 112.5 102.44 17.3 

18000/12600( 10) 127.3 116.16 19.0 

20000/14000(0) 135.0 122.44 21.0 

26000/18200(+30) 154.0 139.4 23.6 
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related with the hanger spacing of  the catenary is 

listed in Table  2. It varies in direct propor t ion 

to the wave propagat ion velocity. According  to 

Figs. 15 through 18, all naajor frequency com- 

ponents of  the response wtry in direct propor t ion 

to the wave propagat ion velocity. 

4.2 Effect of hanger stiffness 

It was noted in Section 3 that the wave pro- 

pagat ion velocities for the contact and messenger 

wires in the catenary are significantly different 

from those of  the wires calculated by treating 

them as separate s tructures:  They converge due 

to the coupl ing effect of  the hangers. Figs. 19 and 

20 further explore this issue by plott ing the wave 

propagat ion velocities as functions of  the hanger 

stiffness. For  the linear model shown in Fig. 19, 

the two propagat ion velocities are initially dis- 

tinct lbr low hanger stiffness but converge as the 

hanger stifl'ness is increased. Once the wave pro- 

pagation velocity has converged, the frequency 

components  corresponding to the reflections of  

the disturbance wave at the span and hanger 

boundaries  become predominant .  For  the non- 

linear model  of  Fig. 20 in which the hanger 

stiffness in compression is fixed at 10 N / m  and 

only the stiffness in tension is varied, the coupl ing 

effect of  the hanger is diminished and no conver-  

gence is observed. The net result is that the 

influence of  the span and hanger boundaries  on 

the dynamic responses of  the catenary is di- 

minished as well. This restllt also explains in part 

wider frequency spectrums of  the responses ob- 

served in Figs. 10 and II for the nonl inear  case. 
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Since the contact and messenger wires maintain 

distinct wave propagat ion velocities, the number 

of  frequency components  associated with Eq. (3) 

is greater. 

To examine this issue in greater depth, the 

linear hanger stiffness is artificially set at 10 N / m  

to induce minimal  coupl ing between the contact 

and messenger wires. Figure 21 shows a more 

widely spread response spectrum, thus vindicat ing 

the supposition. It is also noted that the 10.5 Hz 

and 21.0 Hz frequency components  of  Fig. 4 de- 

crease to 9.4 Hz and 18.8 Hz, respectively, in di- 

rect propor t ion to the downward  shift in the wave 

propagat ion velocity of  the contact wire. The 

displacernent of  the contact wire is shown in Fig. 

22. While  the spread in the response spectrum is 

not as obvious  as in the acceleration response, tile 

predominance  of  tile 1.0 Hz component  related 

with the span boundary vanishes. In addit ion,  
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there is a pronounced increase in the magnitude 

of the displacement. Normally, a strong coupling 

allows the messenger wire to shoulder a signifi- 

cant portion of the excitation load, thus easing the 

burden on the contact wire. When the coupling is 

diminished due to low stiffness, the sharing of the 

burden cannot take place as readily, and results in 

greater motion of  the contact wire. 

4.3 Effect of hanger spacing 
It was previously noted that the hangers act to 

transfer a portion of the dynamic load acting on 

the contact wire onto the messenger wire. The 

degree of such transfer increases in direct propor- 

tion to the number of the hangers available. The 

number of the hangers for each span is varied and 

the corresponding displacement of the contact 

wire listed in Table 3. As the number of the 

hangers increases, i.e., the spacing between the 

Table 3 Response characteristics for different han- 
ger numbers 

No. ot" 
hangers/span 

Contact wire 
displacement 

(ram) 
at 90 m 

Hanger 
spacing 

(m) 

9 

6.75 

5.0 

Frequency 
(Hz) 

6 10.311 7.4,,"14.9 

9 9 .961 10.5/21.0 

12 9 .919  13.2/26.4 

hangers decreases, the contact wire compliance 

achieves more homogeneity, and the displacement 

magnitude decreases. The frequency of the wave 

reflecting from the hanger boundary is inversely 

proportional to the spacing, and is also listed in 

Table 3. 

5. C o n c l u s i o n s  

Dynamic characteristics of the catenary that 

supplies electrical power to high-speed railway is 

numerically investigated. A finite element based 

model of the catenary that incorporates the flex- 

ural rigidity of the contact and messenger wires is 

developed, and numerical simulations are con- 

ducted by varying the structural parameters. The 

hanger is lbund to play predominant role in 

determining the structural characteristics of the 

catenary by inducing coupling between the con- 

tact and messenger wires. 

For small catenary motion, i.e., for tile linear 

hanger stillness case, the reflections of the pro- 

pagating disturbance wave at the span and hanger 

boundaries are found to determine the major 

frequency components of the dynamic response 

of the catenary. For large catenary motion, i.e., 

for the nonlinear hanger stiffness case, the re- 

sponse is spread across much wider spectrum, 

with significant amount of high frequency com- 

ponents present in the dynamic response of the 

catenary. 
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